Jump to content

Plane wave

From Wikipedia, the free encyclopedia

In physics, a plane wave is a special case of a wave or field: a physical quantity whose value, at any given moment, is constant through any plane that is perpendicular to a fixed direction in space.[1]

For any position Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle \vec x} in space and any time Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle t} , the value of such a field can be written as where is a unit-length vector, and is a function that gives the field's value as dependent on only two real parameters: the time , and the scalar-valued displacement Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle d = \vec x \cdot \vec n} of the point Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle \vec x} along the direction Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle \vec n} . The displacement is constant over each plane perpendicular to Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle \vec n} .

The values of the field may be scalars, vectors, or any other physical or mathematical quantity. They can be complex numbers, as in a complex exponential plane wave.

When the values of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle F} are vectors, the wave is said to be a longitudinal wave if the vectors are always collinear with the vector Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle \vec n} , and a transverse wave if they are always orthogonal (perpendicular) to it.

Special types

[edit]

Traveling plane wave

[edit]
The wavefronts of a plane wave traveling in 3-space

Often the term "plane wave" refers specifically to a traveling plane wave, whose evolution in time can be described as simple translation of the field at a constant wave speed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle c} along the direction perpendicular to the wavefronts. Such a field can be written as Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle F(\vec x, t) = G\left(\vec x \cdot \vec n - c t\right)\,} where is now a function of a single real parameter Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle u = d - c t} , that describes the "profile" of the wave, namely the value of the field at time , for each displacement Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle d = \vec x \cdot \vec n} . In that case, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle \vec n} is called the direction of propagation. For each displacement , the moving plane perpendicular to Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle \vec n} at distance Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle d + c t} from the origin is called a "wavefront". This plane travels along the direction of propagation Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle \vec n} with velocity Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle c} ; and the value of the field is then the same, and constant in time, at every one of its points.[2]

Sinusoidal plane wave

[edit]

The term is also used, even more specifically, to mean a "monochromatic" or sinusoidal plane wave: a travelling plane wave whose profile is a sinusoidal function. That is, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle F(\vec x, t) = A \sin\left(2\pi f (\vec x \cdot \vec n - c t) + \varphi\right)} The parameter , which may be a scalar or a vector, is called the amplitude of the wave; the scalar coefficient Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle f} is its "spatial frequency"; and the scalar is its "phase shift".

A true plane wave cannot physically exist, because it would have to fill all space. Nevertheless, the plane wave model is important and widely used in physics. The waves emitted by any source with finite extent into a large homogeneous region of space can be well approximated by plane waves when viewed over any part of that region that is sufficiently small compared to its distance from the source. That is the case, for example, of the light waves from a distant star that arrive at a telescope.

Plane standing wave

[edit]

A standing wave is a field whose value can be expressed as the product of two functions, one depending only on position, the other only on time. A plane standing wave, in particular, can be expressed as Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle F(\vec x, t) = G(\vec x \cdot \vec n) \, S(t)} where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle G} is a function of one scalar parameter (the displacement Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle d = \vec x \cdot \vec n} ) with scalar or vector values, and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle S} is a scalar function of time.

This representation is not unique, since the same field values are obtained if Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle S} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle G} are scaled by reciprocal factors. If is bounded in the time interval of interest (which is usually the case in physical contexts), Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle S} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle G} can be scaled so that the maximum value of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle \left|S(t)\right|} is 1. Then will be the maximum field magnitude seen at the point .

Properties

[edit]

A plane wave can be studied by ignoring the directions perpendicular to the direction vector Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle \vec n} ; that is, by considering the function Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle G(z,t) = F(z \vec n, t)} as a wave in a one-dimensional medium.

Any local operator, linear or not, applied to a plane wave yields a plane wave. Any linear combination of plane waves with the same normal vector Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle \vec n} is also a plane wave.

For a scalar plane wave in two or three dimensions, the gradient of the field is always collinear with the direction Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle \vec n} ; specifically, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle \nabla F(\vec x,t) = \vec n\partial_1 G(\vec x \cdot \vec n, t)} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle \partial_1 G} is the partial derivative of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle G} with respect to the first argument.

The divergence of a vector-valued plane wave depends only on the projection of the vector Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle G(d,t)} in the direction Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle \vec n} . Specifically, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle \nabla \cdot \vec F(\vec x, t) \;=\; \vec n \cdot \partial_1 G(\vec x \cdot \vec n, t)} In particular, a transverse planar wave satisfies Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle \nabla \cdot \vec F = 0} for all Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle \vec x} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle t} .

See also

[edit]

References

[edit]
  1. ^ Brekhovskikh, L. (1980). Waves in Layered Media (2 ed.). New York: Academic Press. pp. 1–3. ISBN 9780323161626.
  2. ^ Jackson, John David (1998). Classical Electrodynamics (3 ed.). New York: Wiley. p. 296. ISBN 9780471309321.